Phosphodiesterase 3A expression is modulated by nitric oxide in rat pulmonary artery smooth muscle cells.

نویسندگان

  • C J Busch
  • A R Graveline
  • K Jiramongkolchai
  • H Liu
  • L S Sanchez
  • K D Bloch
چکیده

Phosphodiesterases (PDEs) limit vasodilation in response to a variety of signaling cascades by metabolizing the cyclic nucleotides cAMP and cGMP. The objective of this study was to test the hypothesis that NO regulates expression of PDE3A, a cGMP-inhibited PDE. Incubation of rat pulmonary artery smooth muscle cells (rPaSMCs) with the NO-donor compound S-nitroso-glutathione (GSNO) increased PDE3A gene expression in a dose- and time-dependent manner. NO-donors increased PDE3A protein levels. Total and milrinone inhibitable cAMP PDE activity were increased 2.8 ± 0.1- and 2.0 ± 0.1-fold respectively in extracts of rPaSMCs exposed to GSNO. The effects of GSNO on PDE3A gene expression were mimicked by the soluble guanylate cyclase (sGC) activators YC-1 and BAY 41-2272 and blocked by the sGC inhibitor ODQ. Incubation of rPaSMC with interleukin-1β and tumor necrosis factor-α induced PDE3A gene expression, an effect which was inhibited by L-NIL, an antagonist of NO synthase 2, or ODQ. Actinomycin D, an inhibitor of RNA polymerase, blocked the GSNO-induced increase of PDE3A mRNA levels, whereas cycloheximide, an inhibitor of protein translation, did not. These observations suggest that NO modulates PDE3A gene expression via mechanisms dependent upon cGMP synthesis and gene transcription. Prolonged exposure to NO may alter the sensitivity of vascular smooth muscle to cGMP- or cAMP-dependent vasodilators, as well as PDE isoform-selective inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide decreases stability of mRNAs encoding soluble guanylate cyclase subunits in rat pulmonary artery smooth muscle cells.

Nitric oxide stimulates soluble guanylate cyclase (sGC) to convert GTP to the intracellular second messenger cGMP. In rat pulmonary artery smooth muscle cells, sGC is an obligate heterodimer composed of alpha1 and beta1 subunits. We investigated the effect of NO donor compounds on sGC subunit gene expression in rat pulmonary artery smooth muscle cells. Sodium nitroprusside and S-nitroso-glutath...

متن کامل

Nitric oxide induces phosphodiesterase 4B expression in rat pulmonary artery smooth muscle cells.

Phosphodiesterases (PDE) metabolize cyclic nucleotides limiting the effects of vasodilators such as prostacyclin and nitric oxide (NO). In this study, DNA microarray techniques were used to assess the impact of NO on expression of PDE genes in rat pulmonary arterial smooth muscle cells (rPASMC). Incubation of rPASMC with S-nitroso-l-glutathione (GSNO) increased expression of a PDE isoform that ...

متن کامل

PULMONARY VASCULAR MUSCLE PROLIFERATION AS A RESULT OF PROTEIN AND mRNA-eNOS ALTERATIONS IN A RAT MODEL OF CHF

Endothelial Nitric Oxide Synthase (eNOS) produces nitric oxide (NO) from L-arginine and is important for the maintenance of cardiovascular homeostasis. Congestive heart failure (CHF) generally results in increased pulmonary blood flow and if untreated leads to pulmonary hypertension and end stage heart failure. We therefore hypothesized that increased pulmonary flow without changes in pres...

متن کامل

Hypoxia decreases expression of soluble guanylate cyclase in cultured rat pulmonary artery smooth muscle cells.

Nitric oxide (NO) has an important role in modulating the pulmonary vascular tone. NO acts, in part, by stimulating soluble guanylate cyclase (sGC) to synthesize the intracellular second messenger cyclic GMP. In vascular smooth muscle cells, sGC is a heterodimer composed of alpha1 and beta1 subunits. The objective of this study was to test whether oxygen concentration regulates sGC expression i...

متن کامل

Regulation of soluble guanylyl cyclase- 1 expression in chronic hypoxia-induced pulmonary hypertension: role of NFATc3 and HuR

de Frutos S, Nitta CH, Caldwell E, Friedman J, González Bosc LV. Regulation of soluble guanylyl cyclase1 expression in chronic hypoxia-induced pulmonary hypertension: role of NFATc3 and HuR. Am J Physiol Lung Cell Mol Physiol 297: L475–L486, 2009. First published July 10, 2009; doi:10.1152/ajplung.00060.2009.—The nitric oxide/soluble guanylyl cyclase (sGC) signal transduction pathway plays an i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physiology and pharmacology : an official journal of the Polish Physiological Society

دوره 61 6  شماره 

صفحات  -

تاریخ انتشار 2010